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Chord intercepts in a two-dimensional cell 
growth model 
Part 2 Chord intercepts of the grains 
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The microstructure of a two-dimensional cell growth model at each fraction transformed along 
Rosiwal's line is characterized. Rosiwal's line cut grains and yields chord intercepts. By the 
use of probability theory we derive the mean number of chord intercepts per unit length as 
well as the dependence of the distribution density of the length of these chord intercepts on 
the fraction transformed. Furthermore, other quantities are derived which appear along and 
around RosiwaFs line. 

1. I n t r o d u c t i o n  
Fig. 1 shows a cut through the investigated micro- 
structure, in which half of the area is occupied by 
fi-grains (spherulites). It has been formed by the follow- 
ing process: nuclei (points) are Poisson-distributed 
within the plane of a supercooled amorphous ~- 
material. Out of these nuclei, fl-grains start to grow 
instantaneously, circularly and at a constant rate. 
Where two grains touch, growth stops and a Straight 
grain boundary is formed. In the present paper, we 
define the unit length by stating that the "mean point 
density of the nuclei within the plane" amounts to 
one. Furthermore, we define the unit time by stating 
that the radial growth rate also amounts to one. 

Therefore, after time t, the radius, R, of the free 
growing grains is given by t = R, and the fraction 
transformed, F, is given by Avrami's relation [1] 

F = 1 - exp ( - ro t  2) (1) 

Later the corresponding values from Table I will be 
required. 

In order to characterize this microstructure, we 
place arbitrarily a straight line (Rosival's traverse) 
into the plane. This line yields chord intercepts of 
different lengths, of the grains and of the amorphous 
regions, as shown in Fig. 1. 

The distribution of the length a of the a-chord 
intercepts at a time t has been derived by the use of 
probability theory in Part 1 of the present series [1]. In 
the present paper we solve this problem for the length 
b of the fl-chord intercepts. But first we derive simpler 
quantities with respect to Rosiwal's line from the 
assumptions above. 

2. Probabilities q;(Y; R) 
2.1. Definitions and assumptions 
We extend the classification of the chord intercepts to 
their associated nuclei, as given in Fig. 1. This means 
that a nucleus of type i yields a chord intercept of type 

i, and vice versa. A nucleus which yields no associated 
chord intercept on Rosiwal's line is called "ineffec- 
tive". Of course all nuclei with a distance Y > R are 
ineffective, but ineffective nuclei may also exist for 
0 < Y ~< R, as shown in Fig. 1. 

In the following we suppose that a nucleus, N, with 
a distance Y exists. The probability that N is of type 
i (i = 1, 2, 3) or is ineffective at a given R is named by 
q;(Y; R) or qinefr(Y; R), respectively. Therefore, it is 
true that 

3 

l = ~, qi(Y; R)  + qinefl-(Y; R)  (2) 
i I 

Furthermore, we identify Rosiwal's line with the 
x-axis, and the y-axis may run through the nucleus N. 

2.2. Calculation of ql (Y; R) 
The nucleus N(0, Y) is of type 1 at R, if the length b 
of its chord intercept in Fig. 2 amounts to 

b = 2(R 2 _ y2)12 f o r0  ~< Y~< R (3) 

This is realized if the eight-shaped area, S, with 
included boundary in Fig. 3 contains no nucleus except 
N(0, Y). The probability q~(Y; R)  to obtain no 
nucleus within the area S - if the nuclei are Poisson- 
distributed with a mean density of one - follows from 
Poisson's formula [2] 

q~(Y; R) = exp ( - S )  (4) 

According to Fig. 3 we have 

S -- SL + Sa (5) 

T A B L E  l 

F 0.25 0.5 0.75 1.0 

R 0 .3026 0 .4697 0.6643 vc 
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Figure 1 Part of  the two-dimensional cell model during transformation at F = 1/2. Along the R line chord intercepts exist of  grains with 
different lengths h and of amorphous  regions with different lengths a. The chord intercepts of  grains are classified into four types: type 1, 
limited on both sides by amorphous  regions; type 2a, limited on the left-hand side by an amorphous  region, on the right by a grain; type 
2b, limited on the left-hand side by a grain, on the right by an amorphous  region; type 3, limited on both sides by grains. 

and 

S L = S R = 7rR 2 - R2{arcsin(Y/R) 

- Y/R[I - (Y/R)2] ''2} for0 ~< Y ~< R 

(6) 

Fig. 4 shows q~ (Y; R) for four different values of  R. 

2.3. Calculation of q2a(Y; R) 
The nucleus N is of type 2a, if the coordinate x~ of the 
right boundary of its chord intercept lies between XL 
and xR. This is realized if the circle, S~i~<~, around xL 
with radius R in Fig. 5 contains no nucleus, but the 
rest, Sr~, of  the eight-shaped area contains one or 
more nuclei. The latter case can also be expressed by 
'~Srcst contains not no nuclei" and its probability 
amounts to 1 - exp (-S,o~).  Therefore, we have 

qa,(Y; R) = exp ( - S ~ ) [ I  - exp (-Sro~)] 

= exp (-S~ir~l~) - exp [-(Scircle -It- S r c s t ) ]  

- exp ( - = R  2) - q,(Y; R). (7) 

Analogously we obtain q2b(Y; R). Furthermore, we 
have 

q2( Y, R) 

Later we need 

ql+2~(R) 

= qa~,(Y; R) + q2b(Y; N)  

= 2qa,(Y; R) (8) 

= q,(Y; R) + q2~,(Y; R) 

= e x p ( - T z R : )  

= I - F  (9) 

amorphous  

Ros iwa l ' s  l ine 

~ - -  b - - 4  

Figure 2 Nucleus N(0, Y) is of type I, because its chord intercept 
with length h borders an amorphous  phase at x L and x R. 

Fig. 4 shows q2( Y; R )  and q~ +2~ (R) for different values 
o fF .  

2.4. Calculation of q3(Y; R) 
The nucleus, N, is of type 3 for XL ~< x~ ~< x r ~-~ XR, 
where Xl and xr represent the coordinates of the left and 
right boundary of the associated chord intercept with 
a length b = x~ x~. A right boundary at xr ~< xR 
exists, if a nucleus is arranged within Sr according to 
Fig. 6. A left boundary at x~ (xL < x~ < xr) exists, if 

(i) the circle around x,. and its included area, SM, 
contain no nucleus; 

(ii) the area & has to contain at least one nucleus. 
SM and Si depend on Xr, and xr depends on the posi- 
tion of the neighbouring nucleus Nr of the right side. 
If  the right boundary lies between x~ and x~ + d%, the 
right nucleus, Nr, has to be arranged within a crescent- 
shaped differential area element dS, as shown in 
Fig. 6. 

The probability that dS contains at least one 
nucleus is given by 

1 exp ( - d S )  (10) 

This equals dS for small values. 
In order to include all possibilities, which lead to 

nuclei of  type 3, we have to integrate over Sr of  Fig. 6 

q3(Y; R) = ~,,(%, exp (--SM)[I -- exp ( - -&)]  dS 
(11) 

q3(Y; R) is obtained by numerical integration and 
given in Fig. 4 for different values of  F. Fig. 4 shows 
also 

3 

qocr(Y; R) = ~ q,(Y; R). (12) 
i = 1  

/ 

\ \  

\ / 

/ 

/ 

Figure 3 The state as in Fig. 2. Construction of the area which 
contains N as the only nucleus. 
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F : l / 4  q e t ~ - ~ . . . . , ~  
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(71 + q2a ~ 

(7., 

q3 

-- ql + q2a ~ ' N \  

F=l/2 ( 7  

ql + q2a 

q~ 

~qe F= O,9999 

ff = (73 

0 0 
Y/R ~ Y/R 

Figure 4 Mean point densities ql (Y; R) of  the nuclei of  type i at a 
distance Y from Rosiwal's line and at a state R. Note, that qineff = 
1 - q~lT. 

Its complement to one yields q~e~-(Y; R). qee(Y; R) for 
R --+ m has been given in [3]. 

3. Consequences of  the qi(Y; R) 
3.1. Mean numbers N i (R) 
In another interpretation, qi(Y; R) represents the 
mean point density of nuclei of type i at distance Yand 
at state R, because the total mean point density of 
nuclei is supposed to be one in the whole area. The 
mean number Ni (R) of chord intercepts of type i per 
length unit on Rosiwal's line at R is computed by 

R ex 0 + 1 

N,(R) = 2 fr=0 J ..... 0 q*(Y; R) dx dY  (13) 

The region of integration is a band with a unit length 
and a width of 2R Fig. 7 shows Ni(F) and Nee(F) with 

3 

Neff = 2 N,(F) for 0 ~< F ~< 1 (14) 
i - I  

Fig. 14 shows the "number fractions" 

W,(F) = N~(F)/Neer(F) (15) 

The mean number of Nmov(R ) of all moving bound- 
aries per unit length along the R line at R amounts to 

Nmov(R) = 2NI(R) + Nz3R) + Nzb(R) (16) 

,,.grain boundary 
, / /  

/ 
/," 

~c " \  \ 

\ 
\ 

5 
Figure 5 Construction of the areas used for calculation of type 2a. 
The grain boundary between N and P is dotted. 

/ 

/ 

dS 
/ 

"~ \ "/ 

h 

Figure 6 Construction of the areas used for calculation of  type 3. All 
four circles hit nucleus N. The neighbouring nucleus of the right side 
is arranged in the differential area element, dS, within S r. 

because each chord intercept of type 1 has two moving 
boundaries. A short calculation yields 

Nmo ~ ( R )  = 4R exp ( -  rcR 2) (l 7) 

The mean number, N~x(R ), of fixed boundaries per 
unit length along Rosiwal's line at R amounts to 

N~x(R) = Nz~(R) + N3(R) (18) 

Finally, we obtain 

Ntot.,(R) = Nmov(R) + N~,(R) (19) 

Nmov(F), N~x(F), and N~o~al(F) are shown in Fig. 8. 

3.2. Rate, v, along Rosiwal's line 
The rate, v, of the moving boundary of a growing 
chord intercept along Rosiwal's line is investigated in 
the left direction only. From Fig. 9 we obtain 

X 2 - -  R 2 -  172 (20) 

For  a fixed Y the differentiation with respect to time 
t gives 

R/R 
.V = v - -  ( R  2 - -  y2)1/2 

1 
= [1 - (Y/R)2] '/2 (21) 

with the supposed/~ = 1. Therefore, the range of v- 
distribution is 1 ~< v < oo. 

If we resolve this equation for Y and differentiate 

4/~" 

1 

1 
F --- 

Figure 7 Mean number  of chord intercepts at F per unit length on 
Rosiwal's line. 
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Figure 8 Mean number of boundaries at F per unit length on 
Rosiwal's line. 

with respect to v by a fixed R, we obtain 

R dv 
dY - v 2 ( v 2 _  l)l/: (22) 

The mean density of  such nuclei, whose chord inter- 
cepts grow at R to chord intercepts of  grains from the 
assumed distribution of the left side, is given by 
q t + 2 a ( R )  in Equation 9. Because this density is con- 
stant within the band with a width of 2R around 
Rosiwal's line we obtain 

dv 
ql+2~(R) dY = ql+2.(R)Rva(v2 - 1) '/2 (23) 

Integration of the left-hand side of this equation from 
Y = 0 to R gives qt+2~(R)R. Therefore, the normal- 
ized distribution density of  the rates in one direction 
along Rosiwal's line is given by 

1 
W(V) --  V2(V 2 __ 1)1/2 for 1 ~< v ~< c~, (24) 

This is true at each R during the whole process of  
growth. The mean rate of  all growing boundaries in 
one direction amounts to v = re/2. Fig. 10 shows 
w(v). 

4. Unnormal ized  distr ibut ion densit ies 
n; (b; R ) 

4.1. Definition 
ni(b; R )db  represents the mean number of  chord 
intercepts of  type i per unit length upon the R line with 
lengths between b and b + db at R. Of  course we 
obtain 

2 N,(R) = n,(b; R) db (25) 
=0 

In the following we derive n~(b; R). 

)r Nucleus 

Rosiwal's line : v /  ~Y 

x {0,01 

Figure 9 Figure computing of the rate v(Y, R) of  the moving 
boundary along Rosiwal's line. 

I 

0 
0 

v i. 

F~gto'e 10 Distribution density w(v) of the rate v of the moving 
boundary along Rosiwal's line at each R. 

4.2. Calculation of n~ (b; R) 
A simple relation exists between Y and b for chord 
intercepts of type 1, given in Equation 3. From this we 
obtain 

q l ( Y ;  R )  d g  

and therefore 

nl(b; R) = 

= q,(b; R) 4[R2 _- ~/2)2],2 dh 

= ½hi(b;  R)  db (26) 

exp [--(SL(b; R) + SR(b; R)] 

b 
X 

2[R ~ - (b/2)2] 1'2 for 0 4 b ~< 2R 

(27) 

4.3. Calculation of n2a(b; R) 
Analogously to q2~,(Y, R) we now calculate the prob- 
ability q2~(b; Y; R) db where, in addition, the chord 
intercept takes on a length between b and b + db. We 
use Fig. 11 and obtain 

q2~(b; Y;R)  db = e x p ( - - S L )  e x p ( - - S a ) d S R  

(28) 

For a given R and b the distance g runs between zero 
and [R 2 - (b/2)2] I/2. For all possible Y values we 

= 2 f [R2 {b/2)2]1'2 
:r=o q2~(b; Y; R) d Y 

OSR = 2 or=o[fe2 ¢h;2121,.2 exp (--(SL + SR)) ~ - d Y  

(29) 

obtain 

n2~(b; R) 

4.4. Calculation of n 3 (b; R) 
q3(b; xl; y; R)dbdx~ represents the probability, that 
the nucleus N at R is of  type 3 and that, in addition, 

Figure 11 Construction 

Y 

dS R 

of the areas used for calculation of qa,(b; R). 
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R 
dS L dSR 

( ( ig//ll z[~ dx[ I I [ xr+d Xr / ' I [ 

Figure 12 Construction of the areas used for calculation ofq3(b: R). 
dS L and dS a are differential area elements. 

the left boundary is arranged between x I and x I ~- dx~ 
and that the length of the chord intercept lies between 
b and b + db. By use of Fig. 12 we obtain 

q3(b;&; Y;R) dbd& = dSlexp( - - (SL + SR))dSR 

(30) 
o r  

~?Si 0SR (31) 
q3(b; &; Y; R) = exp [--(SL + SR)] c~x~ 3b 

Fig. 12 shows 

_ ( R  2 y2)~:a <~ x~ <~ (R 2 - y2)~:2 _ b (32) 

and 

x~ = x I + b (33) 

First we integrate with respect to x~ 

q3(b; Y; R) = i '(e2-Y:-~)~t~ exp [--(SL + SR)] 
Ox I = (R  2 y2)1,'2 

( 0xl ~ -  d& (34) 

and then with respect to Y 

n3(b; R )  = 2 ([R2_(h:2)211,2 
JY=0 q3(b; Y; R) dY (35) 

5. Consequences of the ni(b; R) 
5.1. Distribution of the length b 
The (normalized) distribution density B/(b; R) of the 
length b of all chord intercepts of  type i at R along 
Rosiwal's line is given by 

n,(b; R) 
B,'(b; R) = N,(R) ' (36) 

For the chord intercepts of all three types we obtain 
the distribution density at R 

1 ~ 
B'(b; R) - New-(R) i=~ ~ n,(b; R) (37) 

B'(b; R) and its summands n,(b; R) /N~(R)  are shown 
in Fig. 13 for some values of  R. Another deviation of 
B'(b; R) for R = ov has been given by [3]. The 
cumulative distribution function B(b; R) of chord 
intercepts of all types follows by 

-h  

B(b; R) = J~,=0B'(b';R) db' f o r 0  <~ b <~ 2R 

(38) 

5.2. Mean lengths/)(R) of chord intercepts 
The mean length/7~ (R) of all chord intercepts of type 
i at R is defined by 

6,(R) = f~R=0 bB/(b; R) db (39) 

Furthermore, we have 

c2R 

b(R) = Jh_o bB'(b; R) db (40) 

5.3. Mean length fractions F i (R)  
The fraction transformed, F(R), also represents 
the mean transformed length per unit length upon 
Rosiwal's line at R. This transformed mean length is 
composed by the lengths F~(R) of the three types 
according to 

3 

F(R) = ~ F,(R) (41) 
i = l  

with 

£~(R) = Ni(R)bi (42) 

The length fraction D~(F) with respect to the trans- 
formed length is given by 

F,(F) 
D,(F) - (43) 

F 

and is shown in Fig. 14. 

6. Conclusion 
Geometric aspects of the microstructure of the 

-< 

F=I/I~/ 

O r 
0 2 /?  

b --,,-- 

F = 1 / 2  

2 ' 

F =  3 / 4  F -= I  

2 P [  2/7 1 2 /2  
b --4,,-- b ~  b - - - , ~  

Figure 13 Distribution density 
B'(b; F) of the length b of the 
chord intercepts and the fractions 
of the three types. 
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Figure 14 D,(F) is the fraction of length of type i related to the 
transformed length at /7. W,(F) (dotted) is the number  of  chord 
intercepts of  type i related to the number  of  all chord intercepts 
at F. 

2. Chord intercepts of type 2 dominate for F about 
0.5, running from zero through a maximum to zero. 

3. Chord intercepts of type 3 dominate for large F, 
increasing with F. At F = 1 type 3 exists only. This 
special case has been treated in [3]. 

Two invariants of the growing system are found: 
1. The distribution density w(v) of the rate v (>  0) is 

independent of F and the mean value is v = rr/2. 
2. The mean nucleus density qi+2~(F) is indepen- 

dent of Yand amounts to 1 - F. 
A numerical simulation with 10 9 nuclei around 

Rosiwal's line has been done, proving the results 
above. A correspondence between the results derived 
and the experimental results obtained on foil of iso- 
tactic polypropylene will be given in Part 4 of this 
series. 

growing two-dimensional cell model can be charac- 
terized by use of probability theory. In doing so we 
obtain results about the area around Rosiwal's line (as 
shown by qi(Y; R)) as well as on Rosiwal's line (as 
shown by Ni, Wi, Di, B/, B', Ne~-). All these results 
prove quantitatively the following trends. 

1. Chord intercepts of type I dominate for small F, 
but their influence decreases with growing F. 
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